Area-Efficient Pipelining for FPGA-Targeted High-Level Synthesis
Ritchie Zhao, Mingxing Tan, Steve Dai, Zhiru Zhang

School of Electrical and Computer Engineering, Cornell University, Ithaca, NY

{rz252, mingxing.tan, hd273, zhiruz} @cornell.edu

Abstract

Traditional techniques for pipeline scheduling in high-level synthe-
sis for FPGAs assume an additive delay model where each opera-
tion incurs a pre-characterized delay. While a good approximation
for some operation types, this fails to consider technology mapping,
where a group of logic operations can be mapped to a single look-
up table (LUT) and together incur one LUT worth of delay. We pro-
pose an exact formulation of the throughput-constrained, mapping-
aware pipeline scheduling problem for FPGA-targeted high-level
synthesis with area minimization being a primary objective. By tak-
ing this cross-layered approach, our technique is able to mitigate
the pessimism inherent in static delay estimates and reduce the us-
age of LUTs and pipeline registers. Experimental results using our
method demonstrate improved resource utilization for a number of
logic-intensive, real-life benchmarks compared to a state-of-the-art
commercial HLS tool for Xilinx FPGAs.

1. Introduction

Over the past few years, high-level synthesis (HLS) has emerged
as a powerful tool for managing the increasing size and complexity
of hardware designs. HLS allows engineers to build circuits using
behavioral-level constructs, resulting in improved productivity and
time-to-market over traditional register-transfer level (RTL) design
flows. HLS is particularly useful for applications that repeatedly
execute one or more compute heavy kernels inside loops, which are
widespread in domains such as signals processing, cryptography,
and machine learning. As a consequence, one of the most widely
implemented techniques in HLS is pipelining, which synthesizes a
datapath that allows successive iterations of a loop or function to
execute before the current iteration has finished. This improves the
throughput of the final circuit at a low resource cost.

Traditional pipeline synthesis typically uses a software compila-
tion technique known as modulo scheduling [18] to generate a static
schedule for a single loop iteration which can then be repeated
at an interval known as the initiation interval (II). The schedule
plays a singular role in HLS by determining the requisite number
of pipeline stages and inserting register boundaries into the untimed
code. One major weakness of the existing modulo scheduling tech-
nique is its lack of awareness of the downstream synthesis opti-
mizations such as logic synthesis and technology mapping. Each
operation is typically assumed to incur a set delay based on the op-
eration type (add, multiply, etc.), which is approximately the case
when targeting general-purpose processors. However, this assump-
tion fails to consider low-level optimizations when the target is a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.

DAC 15, June 07 - 11, 2015, San Francisco, CA, USA
Copyright 2015 ACM 978-1-4503-3520-1/15/06$15.00
http://dx.doi.org/10.1145/2744769.2744801

LUT-based FPGA. In particular, it is possible to map a large logic
network to a few levels of LUTs during the technology mapping
step. We illustrate how the existing approach results in an overly
conservative schedule using the following example.

cycle 0 cycle 0
4-LUT

cycle 1

cycle 2

cycle 3 cycle 1

(a) Suboptimal schedule (b) Mapping-aware schedule
Figure 1: Pipeline schedule for a Reed-Solomon encoder: Target
clock period is 5ns; each logic operation or LUT incurs a 2ns delay.
(a) Suboptimal schedule requires 3 LUTSs and 3 pipeline stages; (b)
Optimal schedule requires 2 LUTs and 1 pipeline stage.

Figure 1 shows the data-flow graph (DFG) of a kernel in Reed-
Solomon encoding [1], a prominent error-correction algorithm. For
illustrative purposes we will assume the FPGA uses 4-input LUTs,
the target clock period is 5ns, and the target /1 is one cycle. Exist-
ing scheduling techniques assume an additive delay model based
on pre-characterized delays, and generate a three-stage pipeline
(left). In practice, however, it is possible to map the entire kernel
to only two LUTs, which can be chained combinationally in one
cycle (right).

Crucially, it is not possible to obtain the optimal schedule using
a traditional flow where pipeline synthesis and technology mapping
are performed in separate steps. Given the mapping-agnostic delay
estimates, the modulo scheduler will pessimistically insert registers
to meet timing. Downstream technology mapping must then respect
these register boundaries and is unable to shorten the pipeline. To
bridge the illustrated QoR gap, the scheduling algorithm must be
made aware of the underlying LUT-based hardware and potential
mapping optimizations.

In this paper we present a mixed integer linear programming
(MILP) formulation of modulo scheduling to perform mapping-
aware pipeline synthesis. Our method allows the MILP to select the
optimal mapping for each operation to minimize LUT and register
utilization. While an ILP is inherently unscalable to large designs,
our primary goal is to demonstrate the improvements in area that
can be realized using this cross-layered pipelining approach com-
pared to a state of the art commercial HLS tool for Xilinx FPGAs.
Experiments performed on a set of real-life benchmarks from a va-

riety of domains show the applicability of our ideas. More specifi-
cally, our main contributions are as follows:

1. We are the first to propose an exact formulation of pipeline
scheduling which is capable of minimizing resource usage,
including LUTs and registers, under a throughput constraint
while considering technology mapping.

2. We study a diverse set of real-life applications and demonstrate
the considerable gap in QoR between a state-of-the-art com-
mercial HLS tool and our MILP solution.

The rest of this paper is organized as follows: Section 2 exam-
ines previous work on pipeline scheduling and technology mapping
algorithms, as well as recent efforts to improve pipeline synthesis
in the context of HLS; Section 3 presents our cut enumeration al-
gorithm and MILP formulation; We report experimental results in
Section 4 and conclude the paper in Section 5.

2. Related Work

Modulo scheduling is a well-known compiler optimization tech-
nique to realize software pipelining [18]. It is also extensively used
in the HLS context for enabling loop and function pipelining. For
example, state-of-the-art HLS tools such as LegUp [4] and Vivado
HLS [10] make use of a mathematical programming formulation
known as system of difference constraints (SDC) to support modulo
scheduling for hardware pipelining synthesis [22, 3]. Other devel-
opments to incorporate memory port reduction [2], pipeline flush-
ing [12], polyhedral analysis [15], and multithreading [20] continue
to advance the pipelining capabilities of HLS.

For an FPGA, technology mapping is the process of cover-
ing a network of logic gates with LUTs [6]. While some promi-
nent mapping techniques include FlowMap [8], CutMap [9], and
DaoMap [5], there exists numerous mapping techniques that op-
timize for LUT depth [8] or area [11, 5]. Meanwhile, Pan et al.
proposed a retiming-based technology mapping technique that
considers mapping for register repositioning to achieve the min-
imum clock period [17, 16]. Area-efficient mapping is an impor-
tant step in achieving good QoR in the physical implementation
flow. Unfortunately, while latency-optimal technology mapping
can be achieved in polynomial time [8], area-optimal mapping is
NP-hard [14]. An ILP-based algorithm for minimum-area LUT
mapping is proposed in [7]. Unlike our approach, however, it es-
chews the usage of cuts. Recent research has focused on integrating
mapping with the upstream tool flow to explore additional opti-
mizations in high-level analysis. In particular, Zheng et al. propose
a flow that iterates between upstream scheduling and downstream
mapping and place-and-route and uses post-physical implementa-
tion timing for re-scheduling [23]. Most recently, Tan et al. propose
a constrained scheduling algorithm that considers depth-optimal
LUT mapping [19]. However, this work does not address pipelined
designs and focuses on minimizing latency.

3. Mapping-Aware Modulo Scheduling

The key idea behind our approach is to perform pipeline schedul-
ing while taking into consideration LUT mapping. To accomplish
this, we extend the technique of cut enumeration from conventional
technology mapping algorithms into the HLS domain. A brief de-
scription of traditional cut enumerations is as follows.

Let v be a node on a graph representing a bit-level logic net-
work. Then we define O,, a cone of v, as a sub-graph of v and its
predecessors such that there exists a path from any node in O, to v
that is entirely contained within O,,. The cut of O,,, denoted as C,,
is then defined to be the set of nodes not in O,, with an edge point-
ing to a node in O,. A cone and its associated cut is defined to be
K -feasible if the cut contains K or fewer nodes. Because a K -input

LUT can implement any K-bounded logic network, a K -feasible
cone can be mapped to a single K -input LUT.

Cut enumeration is the process of identifying the set of all K-
feasible cuts for every node in the graph. Afterward this is done,
the technology mapping problem becomes one of selecting a set of
cuts whose cones cover each node in the graph, while minimizing
some objective such as total latency or LUT area.

Typically, cut enumeration is done on a bit-level directed acyclic
graph (DAG). However, the pipeline scheduling problem operates
on a word-level control data flow graph (CDFG). Our approach is
to use a modified cut enumeration algorithm to find the cut set of
each operation, and construct an MILP using the cut information
which simultaneously schedules each operation while selecting an
optimal set of cuts which covers the CDFG. Our MILP performs
modulo scheduling, which attempts to schedule one iteration of a
loop to meet a target initiation interval. More formally, here is our
area-minimizing modulo scheduling problem formulation:

Given: (1) A CDFG for a function or loop whose edges capture
inter-iteration and intra-iteration data dependences between opera-
tions; (2) A target clock period Tp; (3) A target initiation interval
II; (4) A set of constraints C' including latency constraints, cycle
time constraints, and resource constraints; (5) Characterized delays
for operations on a target FPGA device using K -input LUTs.

Goal: Find a minimum area modulo schedule for the operations
so that no constraints in C' are violated, and within each cycle, there
exists a feasible K-input LUT mapping that meets 7).

3.1 Word-Level Cut Enumeration

An intuitive approach to word-level cut enumeration is to break
down the word-level DFG into a bit-level graph [21] and use a tra-
ditional method. Tan et al. proposed a word-level cut enumeration
algorithm, but only for simplicity purposes since the scheduling
approach in their paper can handle both bit-level and word-level
graphs [19]. In this work, bit-level decomposition would gener-
ate an enormous number of cuts and make an MILP approach in-
tractable. A word-level cut enumeration algorithm is therefore nec-
essary, and we present the technique in detail below.

Bitwise operations such as AND/OR/XOR are straightforward be-
cause the operations on different bits are completely independent.
The key challenge arises for non-bitwise operations, such as shift-
ing or arithmetic, where a single bit of the output might depend on
multiple bits of each input operand. For instance, given an addition
operation out[1 : 0] = iny[1 : 0] + in2[1 : 0], the most significant
output bit out[1] would depend on four input bits: in1[0], inq[1],
in2[0], and in2[1], coming from two nodes in1,in2 on the DFG.
To address this problem, we use a bit-level dependence tracking
technique on the word-level DFG. Instead of just identifying de-
pendent values, our algorithm also tracks all dependent bits of each
value. To limit our analysis to those operations which are mapped
to LUTs, we define a black box (BB) operation as one which does
not map to LUTSs, (i.e., memory access operations). The following
applies then to all non-BB nodes in the DFG.

Let v[j] denote the a bit j of the operand v. We then classify
all operations into three classes, and define the D E'P function for
each class of operations as follows:

e Bit-wise operations (AND/OR/X0R): each output bit only de-
pends on a single bit of each input operand. For example,
the DEP for operation out = tn1 & ing is defined as:
DEP(out(j]) = {in1[j], in2[5])}.

e Shifting operations (LSFHIT/RSHIFT): each output bit depends
on a shifted single bit of each input operand. For example,

the DEP for operation out = in; >> s is defined as:
DEP(outlj]) = {im[j + s}.

Algorithm 1: CutGen(CDFQ)

input : C'DFG - control data flow graph
output: CUT - cut set for all CDFG nodes
// Initialize the trivial cut for each node.
1 foreach node vin CDFG do
2 L CUT, = {{v}}
3 L < list of CDFG nodes in topological order
// Iteratively update cut set
4 while L # @ do
5 get the head node v from L
6 if v is not a primary input or black box operation then
7
8
9

newCutSet = mergeCuts(v)
if newCutSet # CUT, then
CUT, + newCutSet
L append v’s successors to L

e Arithmetic operations (ADD/SUB/CMP): each output bit can de-
pend on multiple bits of each input operand. For example, the
DEP for operation out = in1 + ing is defined as follows:
DEP(out[j]) = {ina[j], in1[j—1], ..., in1[0], in2], in2[j —
1}..., in2 O .

The DE P function over a word-level value DE P (v) is further
defined as the union set of DFE P(v[j]) for each bit v[j]. Based on
the DEP function, we compute the K-feasible cut set for each
node in the DFG by merging the K-feasible cuts for all of its
inputs. Suppose v’s inputs are w1, u2, ..., up, with associated cut
sets CUTy,, CUTy,, ..., CUT,,, where CUT, is a collection of
cuts and each cut C; € CUT, is K-feasible. The K-feasible cut
set for v can be computed as follows:

CUT, = mergeCuts(u, ..., up) =

{C' = U {DEPS(Ci)}.if |C'| < K}
Ci€CUTy, 2

where DEPS(C;) = | | {DEP(t)}
teC;

Our cut enumeration algorithm iteratively applies Equation (1)
to each node until all K-feasible cuts are obtained. Algorithm 1
lists the pseudocode of our cut enumeration algorithm. We maintain
a work list for nodes that need to be updated. Initially, the work list
contains all operations, and the cut set for each node v is the trivial
cut {{v}}. For each node in the work list, we apply Equation (1) to
compute the new cut set. If a new cut is added for a node, we update
its cut set and add all its successors to the work list. We remove
a node from the work list each time it is visited. The algorithm
terminates when the work list becomes empty. Note that for each
black-box operation, we simply force its cut set to be its trivial cut.
Previous studies have shown that cut enumeration is an exponential
algorithm with respect to K [11]. Nevertheless, the actual runtime
for cut enumeration is typically very fast as the value of K is small
in practice (K < 6).

Figure 2 demonstrates the cut enumeration for the example
listed in Figure 1. The original Reed-Solomon application uses 32-
bit operations, but for simplicity, we use 2-bit operations in this
figure. Cut enumeration for A and B are relatively simple. Each bit
of A depends on a single shifted bit of input s, while each bit of B
depends on a single bit of each input operand ¢ and A. In general,
operation C' would be treated as an arithmetic operation, but in this
example, the comparison “B >= 0” is actually testing whether the
most significant bit is zero or one. In this case, our algorithm will
identify that the output of C only depends on the highest bit of each

input based on bit-level dependence tracking. Our algorithm can
also handle the cycle which arises from a loop-carried dependence
when processing nodes D and E.

CUTS[Alil] ={{s[i-11}}

CUTS[BIi]] = {{Allil, tfil},
{sli-1], t[il}

CUTS[Clo]] ={{B[1]},
{t11, AN,
{t[1], s[O} }

CUTS[D[] 1 ={{C[0], viil, E[T},
{B[11, vlil, E[il},
{t11, AL, I, E[T,
{t[11, s[11, vIil, E[I},
{Clo], vi], wiil, DIiT},
{BI1], viil, wli], DIil}.}

CUTS[E[i]] = {{WIil, DI},
{WIil, viil, Clo], E[il},
{WIi, vIi], B[], E[il}
{WIi], vii], C[0], DIil},
{WIil, vil, B[], DIil} }

Figure 2: Cut enumeration for the Reed-Solomon decoder.

3.2 MILP Formulation of Modulo Scheduling

We formulate the modulo scheduling problem as a mixed inte-
ger linear program (MILP). Given a word-level dependence graph
G and the cut set CUT, of each graph node v computed via
Algorithm 1, our formulation aims to compute an area-efficient
pipelined schedule while respecting the following constraints:

LUT cover constraints — For each cut of v, we create a binary
variable ¢, ;, denoting whether cut ¢ is selected for node v. We
also define the binary variable root, as the sum of ¢, ; for all 7.
Conceptually, if root, = 1 then v is the root of a cone that will
be mapped to a LUT. Otherwise v will be mapped inside the cones
of other nodes. Note that by the definition of root,, the MILP can
only select one cut for each node. Equation (3) ensures that each
primary output (PO) is a root node, while Equation (4) ensures that
the inputs of a selected cut are themselves root nodes.

root, € {0,1}

root, = Z Cv,i YU 2)
> cos=1 Vv e {POs} 3)
Co,i < ooty Yu € CUT[H] 4)

Dependence constraints — The MILP uses a set of binary
scheduling variables s,;, 0 < ¢t < M where M is the bound on
pipeline latency, to denote whether operation v is assigned to cycle
t. Equation (5) below constrains each operation to a single clock
cycle, and Equation (6) defines S, an integer variable whose value
is the actual cycle assigned to v.

D sui=1 ®)
t
Su =) t#su (©6)
t

Given a dependence between operations v and v with a distance
distu,v' , we need to guarantee that operation v in iteration & is

' A distance of 0 indicates an intra-iteration dependence, while a non-zero
distance indicates an inter-iteration dependence.

finished before we start the operation v in iteration k + disty, ..
This can be captured by Equation (7):

Sy — Sy —IT-disty, <0)

Cycle time constraints — To consider the possibility of combi-
nationally chaining multiple operations in a clock cycle, the MILP
also assigns to each variable a start time L, within the cycle, Note
that L, is a real number with bounds 0 < L, < T¢p, where Top
is the target clock period. Suppose d,, is the delay of operation v in
nanoseconds, Equation (8) ensures a combinational circuit will not
across clock boundaries:

Lv + dv S TCP (8)

For each dependence between nodes u and v, we must make
sure v will not start later than v if they are scheduled in the same
cycle. Equation (9) ensures this constraint:

(Su - Sv —1II- dzstu,v) * TCP + (Lu - L’L) + Co,i * du) S 0

where u is in CUT,[i].
)

Essentially, Equation (9) enforces a difference between L,, and
L, if and only if » and v are scheduled in the same cycle (i.e., when
Sy —Su—11-dist, ., = 0).If the selected cut of v does not contain
u (Cy,; = 0) then w and v will be constrained to have the same start
time in the same cycle (i.e., L, = L, and S,, = S,), and will thus
be mapped into the same LUT.

Register constraints — Register usage is captured by consid-
ering the liveness of each operation. We define binary variables
live, + to denote whether the result of operation v is live on cy-
cle t. We shall show that live, : can be calculated using binary
variables de f, ; and kill, ; and adding the constraint in Equation
(12) for each w in CUT, [i]:

t—|dv/Tcp]

def'u,t = Z Sv,z (10)
z=0
t
killyy = s,z an
z=0
defur — killys — (1 — o) < livey, (12)

Here def, + = 1 if the results of v is available on or before cycle
t, and kill, ; = 1 if the inputs of v are killed on or before cycle ¢.
Thus Equation (12) ensures live,: = 1 on each cycle ¢ where
the results of v is defined and at least one fanout of has not
yet executed. The term (1 — ¢, ;) ensures that if CUT, 7] is not
selected, the liveness constraint between u and v is inactivated.
Using live we can define the maximum number of registers
needed on each cycle m, taking into account that operations sep-
arated by exactly I cycles will execute concurrently in a pipeline:

Reg(m) = Z Z Bits(v) x livey +

teT! vEV (13)
where T’ = {t | t mod IT = m}

Here Bits(v) is the number of bits in the value produced by v.
Resource constraints — In this work we consider resource con-
straints only for black-box operations. Because the cut set for such
operations will always contain only the trivial cut, we do not need to
consider mapping for them. The resource constraints in our MILP
are therefore identical to those in a canonical modulo pipelining
formulation [18]. Let r denote a resource type, X, the number of
that resource used for the design, N, the number of that resource

available, and R(v) the resource type for a black-box operation v.
Then for each r:

3> s =X <0,¥m:0<m<II
teT! veV' (1)
Xr < Ny (14)
where 7" = {t | t mod I] = m}
and V'(r) = {v | R(v) = r}
Objectives — The objective of the MILP is to minimize the

weighted sum of the number of root nodes and the number of
registers:

Ir-1
minimize o - Z Bits(v) x root, + 3 - Z Reg(m) (15)
veV m=0

Here a and 3 are user-defined parameters to trade-off the optimiza-
tions on LUT and register usage. Note that our MILP formulation
can be easily extended to consider other type of resources such as
embedded DSP blocks.

4. Experimental Results

Our setup leverages a popular commercial HLS tool which com-
piles C/C++ into Verilog or VHDL targeting Xilinx FPGAs. The
tool uses LLVM as its front-end compiler, and we implemented
our technique as an additional LLVM pass written in C++ which
is applied after compilation and other optimizations, but before the
tool performs scheduling. By reordering instructions and inserting
wait statements, we are able to enforce a custom schedule. No other
changes were made to the program, and we were able to verify
from the synthesis report that our schedule was honored by the HLS
tool. The rest of the HLS flow (binding, etc.) was unchanged. We
used IBM ILOG CPLEX as the MILP solver, and Xilinx Vivado
2014.3.1 as the tool to implement the generated RTL. All timing
and area numbers below were obtained post place and route.

To model the delays of each operation for scheduling, we back
annotated delay values parsed from the schedule report of the HLS
tool for the black-box operations. To allow our experiments to
finish in a timely fashion, we restricted the MILP solver to run
for at most 60 minutes and return the best solution found. For
all benchmarks, a feasible solution was found in this amount of
time. However, this means that not all schedules we generated were
optimal. The values of o and 3 were set to 0.5 in all experiments.

In order to make a fair evaluation of our mapping-aware pipeline
synthesis approach, we have included three sets of results for each
benchmark: the commercial HLS tool, the MILP without mapping
consideration (referred to hereon as MILP-base), and the full MILP
(referred to hereon as MILP-map). MILP-base is implemented by
skipping the cut enumeration step, and assigning to each node only
the trivial cut. We show results for two MILPs to understand how
much of the measured improvement is due to the consideration of
mapping and how much is due to the exact nature of the MILP
versus the heuristic algorithm used by the commercial HLS tool.

Table 1 displays the name and information about each of our
benchmarks. We divided the benchmark set into two classes:

1. Kernels - Compute intensive loops or functions commonly
used in applications. These benchmarks are almost entirely
composed of logical and arithmetic operations.

2. Applications - Complete real-life applications with practical
use from a diverse set of domains. These benchmarks are more
complex and contain more black-box operations.

Each benchmark is fully pipelined to an I1 of 1. For the kernels,
the entire function can be executed on the resulting datapath once

Table 1: Resource usage comparison: Target clock period is 10ns. CP = achieved clock period; LUT = # of look-up tables; FF = # of flip-flops.
The percentages next to each column is calculated relative to the HLS tool.

Design Domain Description Method CP(ns) LUT % FF %
Count the number of HLS Tool 5.43 171 221
CLZ Kernel leading zeros in a MILP-base 4.29 152 (-11.1%) 226 (+2.3%)
64-bit value MILP-map 5.55 99 (-42.1%) 43 (-80.5%)
XOR reduction for an HLS Tool 5.55 3394 257
XORR Kernel array of elements MILP-base 5.55 3394 (+0.0%) 257 (+0.0%)
MILP-map 4.59 3264 (-3.8%) 0 (-100.0%)
Efficient Galois field HLS Tool 1.64 41 27
GFMUL Kernel multiplication MILP-base 1.69 44 (+7.3%) 28 (+3.7%)
MILP-map 3.36 39 (-4.9%) 0 (-100.0%)
Scientific Coordinate Rotation HLS Tool 8.24 1313 631
CORDIC Computing Digital Computer MILP-base 5.19 1663 (+26.7%) 646 (+2.4%)
MILP-map 7.58 1220 (-7.1%) 298 (-52.8%)
Scientific Mersenne Twister HLS Tool 5.70 681 843
MT Computing pseudorandom number ~ MILP-base 6.03 623 (-8.5%) 842 (-0.1%)
generation MILP-map 7.17 640 (-6.0%) 526 (-37.6%)
Advanced Encryption HLS Tool 5.27 4860 4720
AES Cryptography Standard MILP-base 5.33 4564 (-6.1%) 5316 (+12.6%)
MILP-map 5.55 4475 (-7.9%) 2441 (-48.3%)
Reed-Solomon decoder ~ HLS Tool 8.71 6493 8206
RS Communication MILP-base 6.45 7308 (+12.6%) 7114 (-13.3%)
MILP-map 9.26 6656 (+2.5%) 3856 (-53.0%)
Machine Digit recognition using HLS Tool 5.29 1264 1365
DR Learning k-nearest neighbours MILP-base 5.55 1070 (-15.3%) 1088 (-20.3%)
algorithm MILP-map 5.15 963 (-23.8%) 999 (-26.8%)
Global system for HLS Tool 7.76 1706 1231
GSM Communication mobile communications MILP-base 8.53 1543 (-9.6%) 1074 (-12.8%)
MILP-map 9.83 1766 (+3.5%) 493 (-60.0%)

per cycle. For the applications, the input data set is processed at the
rate of one element per cycle.

4.1 Kernel Results

In this section we present the results for the three kernels. CLZ
counts the number of leading zeros in an integer. GFMUL computes
a Galois-Field product of two integers using efficient shifts and
logical operations. Finally, XORR performs xor operations over an
array of inputs.

The kernels saw essentially no improvement in QoR between
the HLS tool and MILP-base, and significant reductions in resource
usage from between the HLS tool and MILP-map. In CLZ MILP-
map cut down the pipeline latency from 7 to 1, reducing the num-
ber of FFs required by 81% compared to MILP-base. In GFMUL and
XORR, MILP-map was able to recognize that the entire pipeline can
be implemented in a single combinational stage, eliminating regis-
ters altogether. MILP-map was also able to decrease the number of
LUTSs used by 19% over the three kernels.

To explain how MILP-map obtained such enormous FF savings,
we will look at XORR in detail. XORR specifies an xor reduction over
an array, which was optimized by the HLS tool into a reduction tree
with depth 9. From the scheduling reports we found that the HLS
tool assigns a delay of 1.37 ns to each xor operation, and generated
a 2-stage pipeline since the critical path through the tree contains
9 xor operations. MILP-base generates an identical schedule. By
considering mapping, however, MILP-map saw that multiple xor
operations can be mapped into a LUT, and that the critical path
easily fits within a single cycle. The FFs saved are precisely the
pipeline registers removed through this optimization, which can be
very significant in the case of a wide pipeline such as a reduction
tree. Conservative delay estimates in existing tools produce sizable

timing slack in each of the kernels, and our mapping-aware algo-
rithm exploits this to pack more operations into each cycle, thus
shortening the overall pipeline and reducing resource counts.

4.2 Applications Results

Here we examine the results for practical applications. Note that RS
utilizes GFMUL as a kernel in its computations.

The most convincing results appear in CORDIC, MT, and AES,
where MILP-map was able to reduce flip-flop registers by an aver-
age of 46% over the HLS tool. In contrast, MILP-base was unable
to achieve any register savings on these designs, and in fact incurred
an average penalty of 4.8%. MILP-base was able to show some im-
provement in RS, DR, and GSM compared to the commercial tool,
obtaining an average FF saving of 16%. But even on these designs,
MILP-map achieved superior QoR, achieving a further reduction in
FFs of 39% over MILP-base. Once again, the results show that the
area savings realized by MILP-map were due to new optimizations
opened up through consideration of mapping, not the differences
between a heuristic and an MILP scheduling approach. Some of
the variation in the results of MILP-base on the application bench-
marks could be attributed to imprecise delay estimates, as we were
not able to obtain a delay from the HLS tool for every operation.

4.3 MILP Runtime and Practicality

Table 2 shows the size of each benchmark as well as the runtime of
the MILP for each benchmark using both MILP-base and MILP-
map. CPLEX performs presolve optimizations such as substitution
and elimination of redundant constraints, and we noted that the
runtime scaled primarily with the number of unique constraints in
the MILP. The number of constraints is based on the total number

of cuts enumerated in the DFG, and is the primary reason MILP-
map is much slower than MILP-base.

Table 2: Runtime of CPLEX for each benchmark, not including cut
enumeration or ILP construction. Zeros indicate runtime too short
to be measured.

MILP Solver Runtime (s)
Design LLVM Instrs MILP-base MILP-map
CLZ 387 9.0 27.6
XORR 2047 0.0 1622.0
GFMULT 86 0.0 0.0
CORDIC 304 3.7 41.7
MT 236 53 3602.0
AES 1809 314.1 3600.0
RS 2503 0.2 1.8
DR 282 3600.0 3603.0
GSM 324 107.6 3603.0
Mean 886.4 448.9 1789.0

The resource constrained pipeline scheduling problem is known
to be NP-hard, and exact formulations have always been deemed
unscalable, with nearly all commercial algorithms being heuristic
in nature. This efficiency gap is reflected in our data, with the com-
mercial tool finishing in seconds compared to MILP-map’s 60 min-
utes on some designs. Nevertheless, it would not be unreasonable
to use MILP-map to trade-off runtime for improved design quality
in the case of small, critical kernels. Similar observations about the
viability of exact ILP methods in scheduling are made in [13].

5. Conclusions and Future Work

We present an area-efficient pipeline synthesis approach for HLS
which uses a word-level cut enumeration technique and an MILP
formulation to perform mapping-aware modulo scheduling. We
test our algorithm on a variety of kernel benchmarks and practi-
cal applications, obtaining improved LUT and FF usage compared
to both a state-of-the-art commercial HLS tool and a mapping-
agnostic MILP approach. While an MILP formulation is unscalable
in general, we have limited the runtime of the solver to 60 min-
utes, which is tolerable given the non-trivial improvements in QoR.
Future work includes incorporating mapping awareness into a scal-
able heuristic pipeline scheduling algorithm as well as investigating
other logic synthesis optimizations such as exploring different logic
decompositions of the circuit during mapping.

6. Acknowledgements

This work was supported in part by NSF CAREER Award #1453378,
NSF XPS Award #1337240, and a research gift from Xilinx, Inc.

References

[1] A. Agarwal, M. C. Ng, and Arvind. A Comparative Evaluation of
High-Level Hardware Synthesis Using Reed—Solomon Decoder. I[EEE
Embedded Systems Letters, 2(3):72-76, 2010.

[2] Y. Ben-Asher, D. Meisler, and N. Rotem. Reducing Memory
Constraints in Modulo Scheduling Synthesis for FPGAs. ACM Trans.
on Reconfigurable Technology and Systems (TRETS), 3(3):15, 2010.

[3] A. Canis, S. D. Brown, and J. H. Anderson. Modulo SDC Scheduling
with Recurrence Minimization in High-Level Synthesis. Int’l Conf. on
Field Programmable Logic and Applications (FPL), Sep 2014.

[4] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H.
Anderson, S. Brown, and T. Czajkowski. LegUp: High-Level Synthesis
for FPGA-Based Processor/Accelerator Systems. Int’l Symp. on Field-
Programmable Gate Arrays (FPGA), pages 33-36, Feb 2011.

[5] D. Chen and J. Cong. DAOmap: A Depth-Optimal Area Optimization
Mapping Algorithm for FPGA Designs. Int’l Conf. on Computer-
Aided Design (ICCAD), pages 752-759, 2004.

[6] D. Chen, J. Cong, and P. Pan. FPGA Design Automation: A Survey.

Foundations and Trends in Electronic Design Automation, 1(3):139—

169, 2006.

A. Chowdhary and J. P. Hayes. Area-Optimal Technology Mapping

for Field-Programmable Gate Arrays Based on Lookup Tables. IEEE

Trans. on Computer-Aided Design of Integrated Circuits and Systems

(TCAD), 24(7):999-1013, 2005.

J. Cong and Y. Ding. FlowMap: An Optimal Technology Mapping

Algorithm for Delay Optimization in Lookup-Table Based FPGA

Designs. IEEE Trans. on Computer-Aided Design of Integrated

Circuits and Systems (TCAD), 13(1):1-12, 1994.

J. Cong and Y.-Y. Hwang. Simultaneous Depth and Area Minimization

in LUT-based FPGA Mapping. Int’l Symp. on Field-Programmable

Gate Arrays (FPGA), pages 68-74, 1995.

[10] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang.
High-Level Synthesis for FPGAs: From Prototyping to Deployment.
IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems (TCAD), 30(4):473-491, Apr 2011.

[11] J. Cong, C. Wu, and Y. Ding. Cut Ranking and Pruning: Enabling
a General and Efficient FPGA Mapping Solution. [Int’l Symp. on
Field-Programmable Gate Arrays (FPGA), pages 29-35, 1999.

[12] S. Dai, M. Tan, K. Hao, and Z. Zhang. Flushing-Enabled Loop
Pipelining for High-Level Synthesis. Design Automation Conf. (DAC),
Jun 2014.

[13] A. E. Eichenberger, E. S. Davidson, and S. G. Abraham. Author
Retrospective for Optimum Modulo Schedules for Minimum Register
Requirements. Int’l Conf. on Supercomputing, pages 35-36, 2014.

[14] A. H. Farrahi and M. Sarrafzadeh. Complexity of the Lookup-
Table Minimization Problem for FPGA Technology Mapping. [EEE
Trans. on Computer-Aided Design of Integrated Circuits and Systems
(TCAD), 13(11):1319-1332, 1994.

[15] A.Morvan, S. Derrien, and P. Quinton. Polyhedral Bubble Insertion: a
Method to Improve Nested Loop Pipelining for High-Level Synthesis.
IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems (TCAD), 32(3):339-352, 2013.

[16] P.Pan, A. K. Karandikar, and C. Liu. Optimal Clock Period Clustering
for Sequential Circuits with Retiming. IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems (TCAD), 17(6):489—
498, 1998.

[17] P. Pan and C.-C. Lin. A New Retiming-Based Technology Mapping
Algorithm for LUT-based FPGAs. Int’l Symp. on Field-Programmable
Gate Arrays (FPGA), pages 35—42, 1998.

[18] B. R. Rau. Iterative Modulo Scheduling: an Algorithm for Software
Pipelining Loops. Int’l Symp. on Microarchitecture (MICRO), pages
63-74, Nov 1994.

[19] M. Tan, S. Dai, U. Gupta, and Z. Zhang. Mapping-Aware Con-
strained Scheduling for LUT-Based FPGAs. Int’l Symp. on Field-
Programmable Gate Arrays (FPGA), Feb 2015.

[20] M. Tan, B. Liu, S. Dai, and Z. Zhang. Multithreaded Pipeline
Synthesis for Data-Parallel Kernels. Int’l Conf. on Computer-Aided
Design (ICCAD), pages 718-725, 2014.

[21] J. Zhang, Z. Zhang, S. Zhou, M. Tan, X. Liu, X. Cheng, and J. Cong.
Bit-level Optimization for High-Level Synthesis and FPGA-Based
Acceleration. Int’l Symp. on Field-Programmable Gate Arrays
(FPGA), pages 59-68, 2010.

[22] Z. Zhang and B. Liu. SDC-Based Modulo Scheduling for Pipeline
Synthesis. Int’l Conf. on Computer-Aided Design (ICCAD), pages
211-218, 2013.

[23] H. Zheng, S. T. Gurumani, K. Rupnow, and D. Chen. Fast and
Effective Placement and Routing Directed High-Level Synthesis for
FPGAs. Int’l Symp. on Field-Programmable Gate Arrays (FPGA),
pages 1-10, 2014.

[7

—

[8

—

[9

—

